Headphones

Electroacoustic Design and Verification

Christopher J. Struck

CJS Labs San Francisco, CA – USA

Scopyright CJS Labs 2017 – San Francisco, CA USA www.cjs-labs.com Email: cjs@cjs-labs.com

	Earp	hone Tyj	oes	
Circumaural	Supra-aural	Supra-concha	Intra-concha	Insert
© Copyright CJS	Labs 2014 – San Francis	sco, CA USA <u>www.cjs-lat</u>	o <mark>s.com</mark> Email: <u>cjs@cjs-l</u> ;	abs.com

 <u>Working Sound Pressure Level:</u> SPL resulting from a sinusoidal voltage (single figure at 500 Hz or simulated program signal) through the rated source impedance (120 ohms), across the input connector of the headphone, <i>at a level such that would cause 1 mW to be dissipated in a</i> <i>pure resistance equal to the rated impedance of the headphone.</i> 				
$\frac{\text{Voltages for 1 r}}{16 \Omega : 126 \text{ mV}}$ $20 \Omega : 141 \text{ mV}$ $25 \Omega : 158 \text{ mV}$ $32 \Omega : 179 \text{ mV}$ $40 \Omega : 200 \text{ mV}$ $50 \Omega : 224 \text{ mV}$	<u>nW for Nominal I</u> 60 Ω : 245 mV 80 Ω : 283 mV 100 Ω : 316 mV 120 Ω : 346 mV 160 Ω : 400 mV 200 Ω : 447 mV	Impedance, Z_0 : 250 Ω: 500 mV 300 Ω: 548 mV 400 Ω: 632 mV 500 Ω: 707 mV 600 Ω: 775 mV	Ohm's Law $V = IR, P = VI$ $P = \frac{V^2}{R} = \frac{V^2}{Z_0}$ $V^2 = PZ_0$	
 <u>Maximum Sound Pressure Level:</u> SPL produced in the ear simulator when the headphone is supplied with a sinusoidal voltage of the Rated Maximum Voltage at 500 Hz (see also EN 50332). © Copyright CJS Labs 2017 – San Francisco, CA USA www.cjs-labs 		$V = \sqrt{PZ_0} = \sqrt{0.001 \cdot Z_0}$ $V = 0.0316\sqrt{Z_0}$		

Conclusion (1) Insertion Gain A FLAT INSERTION GAIN is the target! This is 'corrected' from the measured response at DRP. Acoustic Impedance Low Acoustic Z = Open High Acoustic Z = Sealed Test System and Tests Requires a manikin equipped with calibrated ear simulator(s) Sine AND Noise stimuli may be required FFT Data requires 1/3 octave synthesis (power averaging) Most post-processing is simple dB subtraction Present data using the IEC 60263 preferred aspect ratio: 10, 25, or 50 dB = 1 decade

Scopyright CJS Labs 2016 – San Francisco, CA USA www.cjs-labs.com Email: cjs@cjs-labs.com

	References
•	C. J. Struck, <i>"Refinements in the Electroacoustic Testing of Headphones"</i> , proceedings of the Audio Engineering Society International Conference on Headphone Technology – Aalborg, Denmark (2016 August 24–26).
•	IEC 60268-7 – Sound System Equipment. Part 7: Headphones
•	ANSI/ASA S3.7-2016 – Earphone Measurement and Calibration
•	IEC 60268-1 – Sound System Equipment. Part 1: General
•	ANSI/ASA S3.25-2009 – Occluded Ear Simulator
•	IEC 60318-4 – Occluded Ear Simulator (<i>formerly IEC 711</i>).
•	IEC 60118-7 Electroacoustics – Simulators of human head and ear – Part 7: Head and torso simulator for the measurement of hearing aids
•	IEEE Standard 1652-2016 "IEEE Standard for Translating Head and Torso Simulator Measurements from Eardrum to Other Acoustic Reference Points"
•	ISO 4869-3: 2007 – Acoustics – Hearing protectors – Part 3: Measurement of insertion loss of ear-muff type protectors using an acoustic test fixture
•	European Standard EN50332-1 (2000), "Sound system equipment: Headphones and earphones associated with portable audio equipment. Maximum sound pressure level measurement methodology and limit considerations. Part 1: General method for "one package equipment"
•	European Standard EN50332-2 (2003), "Sound system equipment: Headphones and earphones associated with portable audio equipment. Maximum sound pressure level measurement methodology and limit considerations. Part 2: Matching of sets with headphones if either or both are offered separately".
•	BS EN 62368-1:2014 Audio/video, information and communication technology equipment. Safety requirements
•	J. Borwick, Loudspeaker and Headphone Handbook 3 rd Ed. 2001
•	Møller, H. et al, "Design Criteria for Headphones" J. Audio Eng. Soc., Vol. 43, No. 4 – April 1995.
•	Burkhard, M.D., editor, " <i>Manikin Measurements"</i> , Industrial Research Products, Inc., Elk Grove Village, Illinois, U.S.A. (1978) – available as a PDF from G.R.A.S., Denmark
	© Copyright CJS Labs 2017 – San Francisco, CA USA www.cjs-labs.com Email: cjs@cjs-labs.com